Bayes Inference for the Spatial Bilinear Time Series Model with Application to Epidemic Data
Spatial time series data can be viewed as a set of time series simultaneously collected at a number of spatial locations. This paper studies Bayesian inferences in a spatial time bilinear model with a Gibbs sampling algorithm to overcome problems in the numerical analysis techniques of a spatial tim...
Gespeichert in:
Veröffentlicht in: | Ŭngyong tʻonggye yŏnʼgu 2012, 25(4), , pp.641-650 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | kor |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Spatial time series data can be viewed as a set of time series simultaneously collected at a number of spatial locations. This paper studies Bayesian inferences in a spatial time bilinear model with a Gibbs sampling algorithm to overcome problems in the numerical analysis techniques of a spatial time series model. For illustration, the data set of mumps cases reported from the Korea Center for Disease Control and Prevention monthly over the years 2001~2009 are selected for analysis. |
---|---|
ISSN: | 1225-066X 2383-5818 |
DOI: | 10.5351/KJAS.2012.25.4.641 |