비대칭 지수멱 오차를 가지는 자기회귀모형에서의 베이지안 추론
시계열 자료를 위한 가장 기본적인 모형인 자기회귀모형을 고려한다. 흔히 시계열 자료에서 정규성 가정이 위배되는 경우가 발생하며, 정규성 가정을 완화하기 위한 방법으로 두꺼운 꼬리를 가지는 분포 또는 비대칭 분포를 고려할 수 있다. 비대칭 지수멱 분포의 사용은 비뚤림이 있는 두꺼운 꼬리를 가지는 자기회귀모형의 이상치의 영향을 줄이 고 로버스트한 추론을 할 수 있도록 한다. 본 논문에서는 자기회귀모형에 대한 오차항에 정규분포 보다 첨도와 왜도 에 유연함을 가지는 분포를 고려함으로써 정규성 가정을 완화하여 추론하고자 하였다. 정규분포의...
Gespeichert in:
Veröffentlicht in: | Ŭngyong tʻonggye yŏnʼgu 2014, 27(6), , pp.1039-1047 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | kor |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | 시계열 자료를 위한 가장 기본적인 모형인 자기회귀모형을 고려한다. 흔히 시계열 자료에서 정규성 가정이 위배되는 경우가 발생하며, 정규성 가정을 완화하기 위한 방법으로 두꺼운 꼬리를 가지는 분포 또는 비대칭 분포를 고려할 수 있다. 비대칭 지수멱 분포의 사용은 비뚤림이 있는 두꺼운 꼬리를 가지는 자기회귀모형의 이상치의 영향을 줄이 고 로버스트한 추론을 할 수 있도록 한다. 본 논문에서는 자기회귀모형에 대한 오차항에 정규분포 보다 첨도와 왜도 에 유연함을 가지는 분포를 고려함으로써 정규성 가정을 완화하여 추론하고자 하였다. 정규분포의 대안으로 비대칭 지수멱 분포를 고려하였으며 정규분포의 결과와 비교 하여 비대칭 지수멱 분포의 로버스트함을 보였다. 또한 주어진 분포에 대한 효율적인 베이지안 추론을 하기 위하여 SIR 알고리즘과 격자망 방법을 고려하였다.
An autoregressive model with normal errors is a natural model that attempts to fit time series data. More flexible models that include normal distribution as a special case are necessary because they can cover normality to non-normality models. The skewed exponential power distribution is a possible candidate for autoregressive models errors that may have tails lighter(platykurtic) or heavier(leptokurtic) than normal and skewness; in addition, the use of skewed exponential power distribution can reduce the influence of outliers and consequently increases the robustness of the analysis. We use SIR algorithm and grid method for an efficient Bayesian estimation. |
---|---|
ISSN: | 1225-066X 2383-5818 |