Generalized Lasso를 이용한 공간 군집 기법

In this paper, we propose a penalized likelihood method to detect local spatial clusters associated with disease. The key computational algorithm is based on genlasso by Tibshirani and Taylor (2011). The proposed method has two main advantages over Kulldorff's method which is popoular to detect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ŭngyong tʻonggye yŏnʼgu 2014, 27(4), , pp.561-575
Hauptverfasser: 송은정(Eun Jung Song), 최호식(Ho Sik Choi), 황승식(Seung Sik Hwang), 이우주(Woo Joo Lee)
Format: Artikel
Sprache:kor
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we propose a penalized likelihood method to detect local spatial clusters associated with disease. The key computational algorithm is based on genlasso by Tibshirani and Taylor (2011). The proposed method has two main advantages over Kulldorff's method which is popoular to detect local spatial clusters. First, it is not needed to specify a proper cluster size a priori. Second, any type of covariate can be incorporated and, it is possible to find local spatial clusters adjusted for some demographic variables. We illustrate our proposed method using tuberculosis data from Seoul. 본 논문에서는 질병과 연관성을 갖는 국소 공간 군집을 검출할 수 있는 벌칙 가능도 방법을 제안한다. 핵심적인 계산 알고리즘은 Tibshirani와 Taylor (2011)에 의해 제안된 일반화된 라소(generalized lasso)에 기반한다. 제안된 방법은 현재 널리 사용되고 있는 국소 공간 군집 방법인 Kulldorff의 기법에 비해 두가지 주요 장점을 가지고 있다. 첫째로, 제안된 방법은 사전에 군집의 크기를 미리 결정해 줄 필요가 없다. 둘째로, 임의의 설명변수를 공간 군집 탐색 기법에 고려할 수 있기 때문에 인구학적인 변수를 보정하였을 때 나타나는 국소 공간 군집을 찾는 것이 가능하다. 우리는 제안된 방법을 서울시 결핵 자료를 사용하여 설명한다.
ISSN:1225-066X
2383-5818