miR-9 and let-7g enhance the sensitivity to ionizing radiation by suppression of NFκB1

The activation of nuclear factor-kappa B1 (NFκB1) in cancer cells may confer resistance to ionizing radiation (IR). To enhance the therapeutic efficiency of IR in lung cancer, we screened for microRNAs (miRNAs) that suppress NFκB1 and observed their effects on radiosensitivity in a human lung cancer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experimental & molecular medicine 2011, 43(5), , pp.298-304
Hauptverfasser: Arora, Himanshu, Qureshi, Rehana, Jin, Shunzi, Park, Ae-Kyoung, Park, Woong-Yang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The activation of nuclear factor-kappa B1 (NFκB1) in cancer cells may confer resistance to ionizing radiation (IR). To enhance the therapeutic efficiency of IR in lung cancer, we screened for microRNAs (miRNAs) that suppress NFκB1 and observed their effects on radiosensitivity in a human lung cancer cell line. From time series data of miRNA expression in γ-irradiated H1299 human lung cancer cells, we found that the expression of miR-9 was inversely correlated with that of NFκB1. Overexpression of miR-9 down-regulated the level of NFκB1 in H1299 cells, and the surviving fraction of γ-irradiated cells was decreased. Interestingly, let-7g also suppressed the expression of NFκB1, although there was no canonical target site for let-7g in the NFκB1 3' untranslated region. From these results, we conclude that the expression of miR-9 and let-7g could enhance the efficiency of radiotherapy for lung cancer treatment through the inhibition of NFκB1.
ISSN:1226-3613
2092-6413
DOI:10.3858/emm.2011.43.5.031