Tensile properties of a ZnS nanowire determined with a nano-manipulator and force sensor

Tensile tests of an individual ZnS nanowire with a cubic structure were performed with a nano-manipulator inside a scanning electron microscope (SEM). To perform the tensile test of ZnS nanowires, a mechanical testing system was installed in the SEM. A nano-manipulator was set up in the SEM, and a c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Korean Physical Society 2012, 61(3), , pp.402-405
Hauptverfasser: Jang, Hoon-Sik, Nahm, Seung Hoon, Lee, Hak Joo, Kim, Jung Han, Oh, Kyu Hwan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Tensile tests of an individual ZnS nanowire with a cubic structure were performed with a nano-manipulator inside a scanning electron microscope (SEM). To perform the tensile test of ZnS nanowires, a mechanical testing system was installed in the SEM. A nano-manipulator was set up in the SEM, and a cantilever force sensor was mounted on the nano-manipulator. The force sensor could be controlled with the nano-manipulator. The ZnS nanowires were dispersed on the transmission electron microscope (TEM) grid; then, the ends of the ZnS nanowires were welded to the TEM grid and the tip of force sensor by exposing them to the E-beam of the SEM. The tensile tests of the ZnS nanowires were performed by controlling the nano-manipulator in the SEM. The load response during the tensile tests was obtained with a force sensor. The strain-stress curve was obtained from the tensile load-displacement curve after the tensile test. The tensile strengths for nanowires 1, 2, and 3 were 364.7 ± 5.2, 146.2 ± 5.2, and 234.4 ± 5.2 MPa, respectively, and the elastic moduli for nanowires 1, 2, and 3 were 39 ± 5.2, 33.4 ± 5.2, and 37.4 ± 5.2 GPa, respectively.
ISSN:0374-4884
1976-8524
DOI:10.3938/jkps.61.402