Nonparametric Continuous Time Regressions with Functional Coefficients
This paper considers a continuous time regression with functional coefficients in conditional mean and variance functions, where the covariate of the regression is assumed to be a general recurrent diffusion. We propose a kernel-based nonparametric estimation for these functional coefficients using...
Gespeichert in:
Veröffentlicht in: | Korean Economic Review 2025, 41(1), , pp.141-174 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper considers a continuous time regression with functional coefficients in conditional mean and variance functions, where the covariate of the regression is assumed to be a general recurrent diffusion. We propose a kernel-based nonparametric estimation for these functional coefficients using discretely sampled data from the underlying continuous time regression. We obtain the limiting behaviors of the proposed estimators through a two- dimensional asymptotic analysis while assuming a shrinking sampling interval and increasing time span and without the stationarity assumption. We demonstrate the feasibility our approach on a short-term interest rate model involving U.S. daily three-month treasury bill rates. KCI Citation Count: 0 |
---|---|
ISSN: | 0254-3737 2713-6167 |
DOI: | 10.22841/kerdoi.2025.41.1.005 |