Platelet-rich plasma protects hippocampal neurons and memory functions in a rat model of vascular dementia

Platelet-rich plasma (PRP) is a promising biomaterial rich in bioactive growth factors, offering potential as a therapeutic agent for various diseases. However, its effectiveness in central nervous system disorders like vascular dementia (VaD) remains underexplored. This study investigated the poten...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Anatomy & cell biology 2024, 57(4), , pp.559-569
Hauptverfasser: Moon, Ji-Hyun, Choi, Ah La, Noh, Hyeon-Jeong, Song, Jae Hwang, Hong, Geum-Lan, Lee, Nam Seob, Jeong, Young-Gil, Han, Seung Yun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Platelet-rich plasma (PRP) is a promising biomaterial rich in bioactive growth factors, offering potential as a therapeutic agent for various diseases. However, its effectiveness in central nervous system disorders like vascular dementia (VaD) remains underexplored. This study investigated the potential of PRP to mitigate VaD progression . A rat model of VaD was established via bilateral common carotid artery occlusion and hypovolemia operation. Rats were randomly assigned to receive either PRP or platelet-poor plasma (PPP)-the latter being a byproduct of PRP preparation and used as a reference standard-resulting in the groups designated as 'operated group (OP)+PRP' and 'OP+PPP', respectively. PRP or PPP (500 μl) was administered intraperitoneally on the day of the operation and postoperative days 2, 4, 6, and 8. Cognitive function was assessed using the Y-maze, Barnes maze, and passive avoidance tests. On postoperative day 8, hippocampal samples were subjected to histological and semi-quantitative analyses. OP exhibited significant memory decline compared to controls, while the 'OP+PRP' group showed notable improvement. Histological analysis revealed increased neuronal loss and neuroinflammation in OP hippocampi, mitigated in 'OP+PRP'. Semi-quantitative analysis showed decreased expression of brain-derived neurotrophic factor (BDNF) and its receptor tropomyosin receptor kinase B (TrkB) in OP, restored in 'OP+PPP' and further in 'OP+PRP'. These results highlight PRP's protective effects against VaD-induced hippocampal damage and cognitive impairment, partially attributed to BDNF/TrkB pathway upregulation.
ISSN:2093-3665
2093-3673
DOI:10.5115/acb.24.117