Optimizing Glioblastoma, IDH-wildtype Treatment Outcomes : A Radiomics and Support Vector Machine-Based Approach to Overall Survival Estimation

Glioblastoma multiforme (GBM), particularly the isocitrate dehydrogenase (IDH)-wildtype type, represents a significant clinical challenge due to its aggressive nature and poor prognosis. Despite advancements in medical imaging and its modalities, survival rates have not improved significantly, deman...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Korean Neurosurgical Society 2025, 68(1), , pp.7-18
Hauptverfasser: Chong, Jiunn-Kai, Jain, Priyanka, Prasad, Shivani, Dubey, Navneet Kumar, Saxena, Sanjay, Lo, Wen-Cheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Glioblastoma multiforme (GBM), particularly the isocitrate dehydrogenase (IDH)-wildtype type, represents a significant clinical challenge due to its aggressive nature and poor prognosis. Despite advancements in medical imaging and its modalities, survival rates have not improved significantly, demanding innovative treatment planning and outcome prediction approaches. This study utilizes a support vector machine (SVM) classifier using radiomics features to predict the overall survival (OS) of GBM, IDH-wildtype patients to short (
ISSN:2005-3711
1598-7876
DOI:10.3340/jkns.2024.0100