Ischemic Stroke Induces ROS Accumulation, Maladaptive Mitophagy, and Neuronal Apoptosis in Minipigs

Reactive oxygen species (ROS)-induced adaptive/maladaptive mitophagy plays an essential role in the pathophysiology of acute ischemic stroke (AIS). However, most studies have been conducted using rodent models, which limits their clinical application. In this study, we aimed to develop porcine model...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of microbiology and biotechnology 2024, 34(12), , pp.2648-2661
Hauptverfasser: Chen, Jie, Bie, Yanan, Guan, Yajin, Liu, Wen, Xu, Fei, Liu, Tianping, Meng, Zilong, Gao, Mengqi, Liu, Jiawei, Xie, Shuilin, Gu, Weiwang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Reactive oxygen species (ROS)-induced adaptive/maladaptive mitophagy plays an essential role in the pathophysiology of acute ischemic stroke (AIS). However, most studies have been conducted using rodent models, which limits their clinical application. In this study, we aimed to develop porcine models of permanent stroke and observe the pathophysiological alterations caused by acute ischemic stroke, focusing on ROS-induced mitophagy. Miniature pigs were subjected to lateral frontotemporal electrocoagulation, which resulted in permanent middle cerebral artery occlusion. We investigated global brain damage and mechanisms of adaptive/maladaptive mitophagy caused by ROS and global brain inflammation after AIS. An early neuroinflammatory response was observed in the ipsilateral hemisphere. ROS levels were significantly elevated in the ipsilateral hemisphere and slightly elevated in the contralateral hemisphere. ROS accumulation may be attributed to the increased production and impaired elimination of ROS. In addition, mitophagy and apoptosis were detected in the ischemic core, which may be attributed to ROS accumulation. We propose "distinct-area targeting" interventions aimed at maladaptive mitophagy within the ischemic core of the infarct hemisphere, which may provide new therapeutic targets for the treatment of AIS.
ISSN:1017-7825
1738-8872
DOI:10.4014/jmb.2409.09003