Defect monitoring system of the internal structures of a sodium fast reactor using an artificial intelligence model

This study developed a defect-monitoring system with an artificial intelligence model, YOLOv7, which is tailored for processing image data from an ultrasonic visualization system within sodium fast reactor (SFR) internal structures. For the safety of SFR internal structures, although it is a crucial...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nuclear engineering and technology 2024, 56(12), , pp.5405-5413
Hauptverfasser: Byun, Hyungi, Lee, Han Gil, Kim, Beom Kyu, Song, Geun Dong, Lee, Bongsoo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study developed a defect-monitoring system with an artificial intelligence model, YOLOv7, which is tailored for processing image data from an ultrasonic visualization system within sodium fast reactor (SFR) internal structures. For the safety of SFR internal structures, although it is a crucial inspection for defect monitoring, it is difficult to identify structural defects because of the invisible environment. Therefore, we applied the YOLOv7 model in this study; however, we encountered challenges including decreased accuracy with complex defect shapes and complications from data augmentation during pre-training. To solve these problems, we additionally applied the enhanced super-resolution generative adversarial network for higher resolution and a Sobel noise-filtering algorithm to enhance the defect detection accuracy. And we evaluated our system by comparing it with a confidence score. This underscores the effectiveness of the approach in enhancing the defect detection capabilities. Therefore, this defect-monitoring system should be designed to preemptively identify internal structure deformations and enhance SFR safety and maintenance practices.
ISSN:1738-5733
2234-358X
DOI:10.1016/j.net.2024.07.049