A simulation for surface acoustic waves driven electron transport in perspective of electrical potential
Surface acoustic waves (SAWs) have been utilized as a platform for single-electron transistors. When superposed with the split-gate potential, propagating SAWs create moving potential wells. We demonstrate the total potential landscape using the Laplace equation and apply the one-dimensional time-in...
Gespeichert in:
Veröffentlicht in: | Journal of the Korean Physical Society 2024, 85(9), , pp.746-750 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Surface acoustic waves (SAWs) have been utilized as a platform for single-electron transistors. When superposed with the split-gate potential, propagating SAWs create moving potential wells. We demonstrate the total potential landscape using the Laplace equation and apply the one-dimensional time-independent Schrödinger equation to determine the conditions necessary for single-electron transport. Our findings reveal that the ratio between the SAW amplitude and the split-gate voltage varies with the SAW wavelength and the absolute value of the gate voltage. We propose essential conditions for single-electron transport based on the ratios derived from our calculations, which can be applied to other material systems. |
---|---|
ISSN: | 0374-4884 1976-8524 |
DOI: | 10.1007/s40042-024-01171-y |