A simulation for surface acoustic waves driven electron transport in perspective of electrical potential

Surface acoustic waves (SAWs) have been utilized as a platform for single-electron transistors. When superposed with the split-gate potential, propagating SAWs create moving potential wells. We demonstrate the total potential landscape using the Laplace equation and apply the one-dimensional time-in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Korean Physical Society 2024, 85(9), , pp.746-750
Hauptverfasser: Ham, Jikhyeon, Kim, Sehun, Son, Seok-Kyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Surface acoustic waves (SAWs) have been utilized as a platform for single-electron transistors. When superposed with the split-gate potential, propagating SAWs create moving potential wells. We demonstrate the total potential landscape using the Laplace equation and apply the one-dimensional time-independent Schrödinger equation to determine the conditions necessary for single-electron transport. Our findings reveal that the ratio between the SAW amplitude and the split-gate voltage varies with the SAW wavelength and the absolute value of the gate voltage. We propose essential conditions for single-electron transport based on the ratios derived from our calculations, which can be applied to other material systems.
ISSN:0374-4884
1976-8524
DOI:10.1007/s40042-024-01171-y