Modified Sucrose Biochar Goethite (α-FeOOH): A Potential Adsorbent for Methylene Blue Removal
The primary purpose of this study is to synthesize biochar (Fe-SB) derived from sucrose through hydrothermal carbonization coupling with goethite activation and utilize it as an adsorbent to remove methylene blue (MB). FTIR, SEM, and BET were used to analyze the biochar characterization. Factors aff...
Gespeichert in:
Veröffentlicht in: | The Korean journal of chemical engineering 2024, 41(11), 296, pp.3127-3138 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The primary purpose of this study is to synthesize biochar (Fe-SB) derived from sucrose through hydrothermal carbonization coupling with goethite activation and utilize it as an adsorbent to remove methylene blue (MB). FTIR, SEM, and BET were used to analyze the biochar characterization. Factors affecting the adsorption of MB on Fe-SB, including temperature, pH, salt, and different water sources, were also meticulously investigated. SEM results indicate that the morphology of the biochar derived from sucrose has a spherical shape, and the goethite crystal has a needle-like structure that successfully deposits on the adsorbent. The specific surface area of Fe-SB is 568 m
2
/g and contains enormous functional groups of O–H, C = C, and C–O. In the condition of pH 8, Fe-SB had a maximum adsorption capability of 476.2 mg/g. The adsorption capacity of biochar for MB removal consists of various adsorption mechanisms. In conclusion, Fe-SB, a novel material, pinpoints a promising and environmentally friendly adsorbent for the removal of MB from aquatic environment. |
---|---|
ISSN: | 0256-1115 1975-7220 |
DOI: | 10.1007/s11814-024-00237-8 |