A hybrid approach of ConvLSTMBNN-DT and GPT-4 for real-time anomaly detection decision support in edge–cloud environments

Anomaly detection is a critical requirement across diverse domains to promptly identify abnormal behavior. Conventional approaches often face limitations with uninterpretable anomaly detection results, impeding efficient decision-making processes. This paper introduces a novel hybrid approach, the c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ICT express 2024, 10(5), , pp.1026-1033
Hauptverfasser: Pamungkas, Radityo Fajar, Utama, Ida Bagus Krishna Yoga, Hindriyandhito, Khairi, Jang, Yeong Min
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Anomaly detection is a critical requirement across diverse domains to promptly identify abnormal behavior. Conventional approaches often face limitations with uninterpretable anomaly detection results, impeding efficient decision-making processes. This paper introduces a novel hybrid approach, the convolutional LSTM Bayesian neural network with nonparametric dynamic thresholding (ConvLSTMBNN-DT) for prediction-based anomaly detection. In addition, the model integrates fine-tuned generative pre-training version 4 (GPT-4) to provide human-interpretable explanations in edge–cloud environments. The proposed method demonstrates exceptional performance, achieving an average F1−score of 0.91 and an area under the receiver operating characteristic curve (AUC) of 0.86. Additionally, it effectively offers comprehensible decision-support explanations.
ISSN:2405-9595
2405-9595
DOI:10.1016/j.icte.2024.07.007