A hybrid approach of ConvLSTMBNN-DT and GPT-4 for real-time anomaly detection decision support in edge–cloud environments
Anomaly detection is a critical requirement across diverse domains to promptly identify abnormal behavior. Conventional approaches often face limitations with uninterpretable anomaly detection results, impeding efficient decision-making processes. This paper introduces a novel hybrid approach, the c...
Gespeichert in:
Veröffentlicht in: | ICT express 2024, 10(5), , pp.1026-1033 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Anomaly detection is a critical requirement across diverse domains to promptly identify abnormal behavior. Conventional approaches often face limitations with uninterpretable anomaly detection results, impeding efficient decision-making processes. This paper introduces a novel hybrid approach, the convolutional LSTM Bayesian neural network with nonparametric dynamic thresholding (ConvLSTMBNN-DT) for prediction-based anomaly detection. In addition, the model integrates fine-tuned generative pre-training version 4 (GPT-4) to provide human-interpretable explanations in edge–cloud environments. The proposed method demonstrates exceptional performance, achieving an average F1−score of 0.91 and an area under the receiver operating characteristic curve (AUC) of 0.86. Additionally, it effectively offers comprehensible decision-support explanations. |
---|---|
ISSN: | 2405-9595 2405-9595 |
DOI: | 10.1016/j.icte.2024.07.007 |