Metabolic modeling of microorganisms involved in anaerobic digestion

Anaerobic digestion (AD) is a biological process where bacteria digest various types of organic matter under anaerobic conditions. AD has been particularly used for generating biogas from organic wastes, such as food waste. Despite its practical applications, the mechanistic understanding of the AD...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biotechnology and bioprocess engineering 2024, 29(4), , pp.613-624
Hauptverfasser: Lee, Junkyu, Lee, Byung Tae, Kwon, Mun Su, Kim, Hyun Uk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Anaerobic digestion (AD) is a biological process where bacteria digest various types of organic matter under anaerobic conditions. AD has been particularly used for generating biogas from organic wastes, such as food waste. Despite its practical applications, the mechanistic understanding of the AD process remains elusive, especially complex interactions within a microbial community, and between the organic waste and microbial community. One systematic approach to address this challenge is to deploy genome-scale metabolic models (GEMs) of microorganisms involved in AD. GEM is a computational model that describes an entire metabolic network of a cell, and can be simulated under various conditions of interest. In this review, we discuss recent metabolic studies of AD-related microorganisms by using their GEMs across the four major stages of AD. We also suggest future directions in this field that need to be addressed to further optimize the GEMs and the AD process.
ISSN:1226-8372
1976-3816
DOI:10.1007/s12257-024-00128-z