Asymptotical Tracking Control of Complex Dynamical Network Based on Links State Observer

This paper studies how to design a control scheme for a complex dynamical network (CDN) such that the state of nodes and links can track on any given reference signals respectively, under the view that the CDN is coupled by the nodes and links. Since the dynamic behavior of the links reflects the ch...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of control, automation, and systems 2024, Automation, and Systems, 22(10), , pp.3025-3034
Hauptverfasser: Zhao, Juan-xia, Wang, Yin-he, Gao, Pei-tao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper studies how to design a control scheme for a complex dynamical network (CDN) such that the state of nodes and links can track on any given reference signals respectively, under the view that the CDN is coupled by the nodes and links. Since the dynamic behavior of the links reflects the changes in network topology(NT), the weights of the links are regarded as state variables of the NT. In addition, since the state of the links is not always avaluable in practical engineering applications, in order to address this problem, this paper provides an asymptotical state observer that uses its observation values to estimate the links state. Based on this, this paper proposes a new control scheme which designs controllers in the nodes and links respectively, to realize the asymptotical tracking control of the nodes and links. In order to understand the NT tracking target, an illustrative example is that the star topology can be chosen as the NT tracking target of communication transmission network for the centralized management. Finally, the validity of the theoretical results is verified by a numerical experiment that applies the control scheme to a helicopter model.
ISSN:1598-6446
2005-4092
DOI:10.1007/s12555-023-0626-x