Algebraic constructions of groupoids for metric spaces
Given a groupoid $(X,*)$ and a real-valued function $d: X\to {\bf R}$, a new (derived) function $\Phi(X,*)(d)$ is defined as $[\Phi(X,*)(d)](x, y):= d(x*y) + d(y*x)$ and thus $\Phi(X,*): {\bf R}^X \to {\bf R}^{X^2}$ as well, where ${\bf R}$ is the set of real numbers. The mapping $\Phi(X,*)$ is an {...
Gespeichert in:
Veröffentlicht in: | 한국수학논문집, 32(3) 2024, 32(3), , pp.533-544 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Given a groupoid $(X,*)$ and a real-valued function $d: X\to {\bf R}$, a new (derived) function $\Phi(X,*)(d)$ is defined as $[\Phi(X,*)(d)](x, y):= d(x*y) + d(y*x)$ and thus $\Phi(X,*): {\bf R}^X \to {\bf R}^{X^2}$ as well, where ${\bf R}$ is the set of real numbers. The mapping $\Phi(X,*)$ is an {\bf R}-linear transformation also. Properties of groupoids $(X,*)$, functions $d: X\to {\bf R}$, and linear transformations $\Phi(X,*)$ interact in interesting ways as explored in this paper. Because of the great number of such possible interactions the results obtained are of necessity limited. Nevertheless, interesting results are obtained. E.g., if $(X,*, 0)$ is a groupoid such that $x*y= 0= y*x$ if and only if $x=y$, which includes the class of all $d/BCK$-algebras, then $(X,*)$ is $*$-metrizable, i.e., $\Phi(X,*)(d) : X^2 \to X$ is a metric on $X$ for some $d: X\to {\bf R}$. KCI Citation Count: 0 |
---|---|
ISSN: | 1976-8605 2288-1433 |
DOI: | 10.11568/kjm.2024.32.3.533 |