Design and control of a new linear magnetic actuator for squeeze film damper

A new model of a linear magnetic actuator (LMA) that can be applied to the controllable squeeze film damper (CSFD) was proposed, designed, and fabricated. To validate the operation of the proposed actuator, a mathematical model of the proposed LMA was derived through experiments. From the experiment...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mechanical science and technology 2009, 23(2), , pp.344-357
Hauptverfasser: Than, Truong Quoc, Ahn, Kyoung Kwan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A new model of a linear magnetic actuator (LMA) that can be applied to the controllable squeeze film damper (CSFD) was proposed, designed, and fabricated. To validate the operation of the proposed actuator, a mathematical model of the proposed LMA was derived through experiments. From the experimental results it was verified that the electromagnetic force depends upon the position of the mover (the outer damper ring of the CSFD) and the applied current. Also, the electromagnetic force varies symmetrically with the position of the mover within the working region. A self-tuning fuzzy PID controller was applied to control the position of the novel LMA. Further, the proposed LMA was assembled in the squeeze film damper (SFD), where the clearance can be controlled by LMA. To investigate the damping effect of the damper under various clearances by controlling the LMA, experiments on the rotor test-rig were conducted. From the experimental results, the proposed device, which is composed of SFD and LMA, was verified to be very effective for attenuation of the vibration of the rotor system.
ISSN:1738-494X
1976-3824
DOI:10.1007/s12206-008-1116-z