An analytical guidance law of planetary landing mission by minimizing the control effort expenditure

An optimal trajectory design of a module for the planetary landing problem is achieved by minimizing the control effort expenditure. Using the calculus of variations theorem, the control variable is expressed as a function of costate variables, and the problem is converted into a two-point boundary-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mechanical science and technology 2009, 23(12), , pp.3239-3244
Hauptverfasser: Afshari, Hamed Hossein, Novinzadeh, Alireza Basohbat, Roshanian, Jafar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An optimal trajectory design of a module for the planetary landing problem is achieved by minimizing the control effort expenditure. Using the calculus of variations theorem, the control variable is expressed as a function of costate variables, and the problem is converted into a two-point boundary-value problem. To solve this problem, the performance measure is approximated by employing a trigonometric series and subsequently, the optimal control and state trajectories are determined. To validate the accuracy of the proposed solution, a numerical method of the steepest descent is utilized. The main objective of this paper is to present a novel analytic guidance law of the planetary landing mission by optimizing the control effort expenditure. Finally, an example of a lunar landing mission is demonstrated to examine the results of this solution in practical situations.
ISSN:1738-494X
1976-3824
DOI:10.1007/s12206-009-0915-1