Derivation of optimal design of cockpit module considering vibration and heat-resistance characteristics

Elimination of noise caused by the permanent deformation of interior plastic parts has been one of the major factors driving the design of automotive interior assemblies. Noise, indeed, is one of the main criteria affecting the perception of vehicle quality. Traditionally, noise issues have been ide...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mechanical science and technology 2010, 24(6), , pp.1219-1224
Hauptverfasser: Kim, Hyunjun, Cho, Hoon, Son, Youngtak, Kim, Hyekyung, Kim, Haeryong, Suh, Myungwon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Elimination of noise caused by the permanent deformation of interior plastic parts has been one of the major factors driving the design of automotive interior assemblies. Noise, indeed, is one of the main criteria affecting the perception of vehicle quality. Traditionally, noise issues have been identified and rectified through extensive hardware testing. However, to shorten the product development cycle and minimize the amount of costly hardware manufactured, hardware testing must rely on engineering analysis and upfront simulation in the design cycle. In this paper, an analytical study conducted to reduce permanent deformation in a cockpit module is discussed. The analytical investigation utilized a novel and practical methodology, implemented through the software tools ABAQUS and iSight, for the identification and minimization of permanent deformation. Here, the emphasis was placed on evaluating the software for issues relating to the prediction of permanent deformation. The analytical results were compared with the experimental findings for two types of deformation location, and the qualitative correlation was found to be very good. We also developed a methodology for the determination of the optimal guide and mount locations of the cockpit module that minimizes permanent deformation. To this end, the methodology implements and integrates nonlinear finite element analysis with sensitivity-analysis techniques.
ISSN:1738-494X
1976-3824
DOI:10.1007/s12206-010-0402-8