Molecular simulation study on adhesions and deformations for Polymethyl Methacrylate (PMMA) resist in nanoimprint lithography

The NIL (nanoimprint lithography) process is explored through numerical simulation, utilizing MD (molecular dynamics), with a focus on the resin deformations and the adhesion between the resin material and the tool. For the force-field of the Polymethyl Methacrylate (PMMA), used for the resin materi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mechanical science and technology 2011, 25(9), , pp.2311-2322
Hauptverfasser: Kwon, Sungjin, Lee, Youngmin, Park, Jaeshin, Im, Seyoung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The NIL (nanoimprint lithography) process is explored through numerical simulation, utilizing MD (molecular dynamics), with a focus on the resin deformations and the adhesion between the resin material and the tool. For the force-field of the Polymethyl Methacrylate (PMMA), used for the resin material, a united atom model is employed. For temperature control in the MD simulation, the recursive multiple chains of the Nosé-Poincaré thermostat is applied. The deformation and adhesion in the NIL process are explored from the mechanics viewpoint based on the present MD results. In particular, the adhesion behavior of a self-assembly monolayer (SAM) in the stamp-releasing stage is discussed in connection with the monolayer thickness.
ISSN:1738-494X
1976-3824
DOI:10.1007/s12206-011-0709-0