A ship berthing system design with four tug boats

In harbor areas, precise ship steering is the most important operation. This requires a set of adequate thrust devices taking into account surge, sway and yaw motions precisely. However, the effectiveness of actuators during low-speed maneuvering is reduced, making it necessary to use tugboats to en...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mechanical science and technology 2011, 25(5), , pp.1257-1264
Hauptverfasser: Bui, Van Phuoc, Kawai, Hideki, Kim, Young Bok, Lee, Kwon Soon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In harbor areas, precise ship steering is the most important operation. This requires a set of adequate thrust devices taking into account surge, sway and yaw motions precisely. However, the effectiveness of actuators during low-speed maneuvering is reduced, making it necessary to use tugboats to ensure safe berthing. In this paper, we present a mathematical model of a system describing the interaction between an unactuated ship and tugboats. Thrust allocation is solved by using the redistributed pseudo-inverse (RPI) algorithm to determine the thrust and direction of each individual tugboat. The main goal of this method is to minimize the power supplied to tugboats and increase their controllability. The constraints are twofold. First, the tugboat can only exert a limited pushing force, and second, it can only change directions slowly. Additionally, an adaptive control law is proposed to capture the draft coefficients of the ship, which are known as uncertainty parameters. The controller guarantees that the ship follows a given path (geometric task) with desired velocities (dynamic task). The specifications of Cybership I, a model ship, are used to evaluate the efficiency of the proposed method through Matlab simulations.
ISSN:1738-494X
1976-3824
DOI:10.1007/s12206-011-0215-4