An efficient method to predict steady-state vibration of three-dimensional piping system conveying a pulsating fluid

The dynamic equations of motion for a three-dimensional piping system conveying a harmonically pulsating fluid contain time-varying terms attributable to the fluid pulsating in the pipe. In this study, finite element formulation for this three-dimensional piping system was performed. The stiffness a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mechanical science and technology 2012, 26(9), , pp.2659-2667
Hauptverfasser: Lee, Seong-Hyeon, Jeong, Weui-Bong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The dynamic equations of motion for a three-dimensional piping system conveying a harmonically pulsating fluid contain time-varying terms attributable to the fluid pulsating in the pipe. In this study, finite element formulation for this three-dimensional piping system was performed. The stiffness and damping matrices in the finite element modeling vary according to time because of the effects of the harmonically pulsating fluid. The frequency-domain method based on eigenvalue analysis cannot be used in this kind of problem. Conventional numerical time-domain methods require substantial computational efforts. An efficient numerical method to predict the steady-state time response of the piping system was presented. In this method, simultaneous equations were constructed by comparing the coefficients of a Taylor series expansion instead of directly solving the problem in the time domain. The accuracy and efficiency of this method were validated by comparison with a conventional numerical integration method.
ISSN:1738-494X
1976-3824
DOI:10.1007/s12206-012-0719-6