Analytical solution of non-Fourier and Fourier bioheat transfer analysis during laser irradiation of skin tissue
The thermal wave and the Pennes bioheat transfer models are solved analytically by employing the Laplace transform method for small and large values of reflection power (albedo) during laser irradiation. Most of the previous studies have been based on the infinite heat diffusion velocity, but non-Fo...
Gespeichert in:
Veröffentlicht in: | Journal of mechanical science and technology 2012, 26(6), , pp.1937-1947 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The thermal wave and the Pennes bioheat transfer models are solved analytically by employing the Laplace transform method for small and large values of reflection power (albedo) during laser irradiation. Most of the previous studies have been based on the infinite heat diffusion velocity, but non-Fourier thermal behavior has been observed experimentally in biological tissue. At low initial albedo values, the temperature in the skin depth that directly results from conduction heat transfer process is caused by the lengthy thermal relaxation time in skin tissue. This condition generates a big difference between the thermal wave and Pennes results at the beginning of the heating process. This difference increases under short-time heating condition and high heat flux. However, with high initial albedo, the temperature distribution in the skin depth becomes negligible because of the skin absorption of laser beams. The non-Fourier effect should be considered during laser heating with low albedo, because errors in the predicted temperature values may occur. |
---|---|
ISSN: | 1738-494X 1976-3824 |
DOI: | 10.1007/s12206-012-0404-9 |