Multi-objective optimization of sheet metal forming die using FEA coupled with RSM

Present study describes the approach of applying response surface methodology (RSM) with a Pareto-based multi-objective genetic algorithm to assist engineers in optimization of sheet metal forming. In many studies, finite element analysis and optimization technique have been integrated to solve the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mechanical science and technology 2013, 27(12), , pp.3835-3842
Hauptverfasser: Kahhal, Parviz, Brooghani, Seyed Yousef Ahmadi, Azodi, Hamed Deilami
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Present study describes the approach of applying response surface methodology (RSM) with a Pareto-based multi-objective genetic algorithm to assist engineers in optimization of sheet metal forming. In many studies, finite element analysis and optimization technique have been integrated to solve the optimal process parameters of sheet metal forming by transforming multi objective problem into a single-objective problem. This paper aims to minimize objective functions of fracture and wrinkle simultaneously. Design variables are blank-holding force and draw-bead geometry (length and diameter). Response surface model has been used for design of experiment and finding relationship between variables and objective functions. Forming limit diagram (FLD) has been used to define objective functions. Finite element analysis applied for simulating the process. Proposed approach has been investigated on a cross-shaped cup drawing case and it has been observed that it is more effective and accurate than traditional finite element analysis method and the ‘trial and error’ procedure.
ISSN:1738-494X
1976-3824
DOI:10.1007/s12206-013-0927-8