Risk-averse Reinforcement Learning for Portfolio Optimization

This investigation explores Reinforcement Learning (RL) for dynamic portfolio optimization with risk assessment. The challenges include market complexity, uncertain reactions, and regulatory requirements for risk-averse decisions. Our solution leverages Bayesian Neural Network (BNN) to capture uncer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ICT express 2024, 10(4), , pp.857-862
Hauptverfasser: Enkhsaikhan, Bayaraa, Jo, Ohyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This investigation explores Reinforcement Learning (RL) for dynamic portfolio optimization with risk assessment. The challenges include market complexity, uncertain reactions, and regulatory requirements for risk-averse decisions. Our solution leverages Bayesian Neural Network (BNN) to capture uncertainties. We successfully implemented a risk-averse Reinforcement Learning algorithm, achieving 18 percent lower risk. Reinforcement Learning with risk-aversion shows promise for optimizing portfolios for risk-averse investors.
ISSN:2405-9595
2405-9595
DOI:10.1016/j.icte.2024.04.010