Atrial Fibrillation Identification Using CNNs Based on Genomic Data

Atrial fibrillation (AF) is the most common cardiac arrhythmia and a major cardiovascular disease epidemic of the 21st century. Early diagnosis and intervention are crucial as AF often progresses without symptoms. This study aims to identify AF using genome-wide association studies and convolutional...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electrical engineering & technology 2024, 19(6), , pp.3645-3653
Hauptverfasser: Lee, Jaehyung, Kwon, Oh-Seok, Ryu, Gayeon, Shin, Hangsik, Pak, Hui-Nam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Atrial fibrillation (AF) is the most common cardiac arrhythmia and a major cardiovascular disease epidemic of the 21st century. Early diagnosis and intervention are crucial as AF often progresses without symptoms. This study aims to identify AF using genome-wide association studies and convolutional neural networks (CNN). Genomic data from 6,358 individuals were used to develop a CNN model, with L2 regularization applied to prevent overfitting. The L2-regularized CNN significantly outperformed the regular CNN across various p-value thresholds. For instance, at p  
ISSN:1975-0102
2093-7423
DOI:10.1007/s42835-024-01998-2