Antioxidant activity of Jeju lava seawater through translocation of Nrf2 in human fibroblast

Reactive oxygen species (ROS) are associated with various pathological conditions, including atherosclerosis and cancer. Photoaging, mainly caused by UVB-induced ROS, accelerates skin aging and collagen degradation. Nuclear factor erythroid 2-related factor 2 (Nrf2) regulates antioxidant enzymes and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Food science and biotechnology 2024, 33(11), , pp.2653-2661
Hauptverfasser: Heo, Hee Sun, Kim, Yeong Eun, Lee, Jong Hun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Reactive oxygen species (ROS) are associated with various pathological conditions, including atherosclerosis and cancer. Photoaging, mainly caused by UVB-induced ROS, accelerates skin aging and collagen degradation. Nuclear factor erythroid 2-related factor 2 (Nrf2) regulates antioxidant enzymes and has demonstrated protective effects against chronic diseases. Jeju lava seawater (JLS), which is rich in minerals, is attracting attention for its health benefits. The current study investigates the antioxidant properties of JLS in human dermal fibroblasts (HDFs). experiments were conducted by culturing HDFs in JLS with different water hardness levels and irradiating UVB. The results show that JLS does not affect HDF viability, especially at high water hardness. JLS treatment enhances collagen production and upregulates Nrf2 and antioxidant enzymes such as NQO1 and HO-1. This mechanism involves the translocation of Nrf2 to the cell nucleus. JLS shows promise as an antioxidant, potentially mitigating the effects of oxidative stress and promoting collagen synthesis.
ISSN:1226-7708
2092-6456
2092-6456
DOI:10.1007/s10068-023-01510-y