Large deformation analysis of anisotropic rubber hose along cyclic path by homogenization and path interpolation methods

Automotive braking hose used to deliver the hydraulic braking force to the drake disc is in a lamination composition of rubber and fabric braided layers to prevent the oil leakage and the excessive radial deformation. Currently, the configuration and durability become a hot issue in the design of br...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mechanical science and technology 2016, 30(2), , pp.789-795
Hauptverfasser: Cho, Jin-Rae, Yoon, Young-Hwan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Automotive braking hose used to deliver the hydraulic braking force to the drake disc is in a lamination composition of rubber and fabric braided layers to prevent the oil leakage and the excessive radial deformation. Currently, the configuration and durability become a hot issue in the design of braking hose, because both substantially affect the oil leakage caused by the micro cracks and the interference with other adjacent parts. The design of braking hose including its configuration has been relied on the trial-and-error experiment because there is no reliable numerical analysis technique. A main obstacle in developing the numerical analysis technique is the geometry modeling of braided layer which is woven with fabric cords of small diameter. The microstructure of braided layer has been simplified as an isotropic layer because of its painstaking modeling job and the necessity of huge number of finite elements. However, such a simple model could not successfully reproduce the out-of-deformation of braking hose which is produced by the orthotropic braided layers. Meanwhile, the braking hose undergoes cyclic large deformation during the steering motion and bump/rebound motions of vehicle. In this context, the goal of this study is to introduce a modeling-effective but reliable large deformation analysis method for braking hose along the specified cyclic path making use of the homogenization and path interpolation methods. The numerical results are also presented to illustrate the proposed numerical analysis method.
ISSN:1738-494X
1976-3824
DOI:10.1007/s12206-016-0134-5