The effect of cryogenic cooling and minimum quantity lubrication on end milling of titanium alloy Ti-6Al-4V

The cooling down of cutting temperature in machining is very important for the improvement of tool life, especially when dealing with work materials that have low thermal conductivity such as titanium alloy. In this study designed to investigate the machining performance of a variety of cooling meth...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mechanical science and technology 2015, 29(12), , pp.5121-5126
Hauptverfasser: Park, Kyung-Hee, Yang, Gi-Dong, Suhaimi, M. A., Lee, Dong Yoon, Kim, Tae-Gon, Kim, Dong-Won, Lee, Seok-Woo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The cooling down of cutting temperature in machining is very important for the improvement of tool life, especially when dealing with work materials that have low thermal conductivity such as titanium alloy. In this study designed to investigate the machining performance of a variety of cooling methods, cryogenic, Minimum quantity lubrication (MQL), and flood cooling are performed on solid end milling of titanium alloy, Ti-6Al-4V. In particular, the effect of internal and external spray methods on cryogenic machining is analyzed with a specially designed liquid nitrogen spraying system by evaluating tool wear and cutting force at cutting conditions. The cutting force is also analyzed for tool breakage detection. As a result, the combination of MQL and internal cryogenic cooling improves tool life by up to 32% compared to conventional cooling methods. The cutting force is also reduced significantly by this combination of cooling and lubrication strategy of side end milling.
ISSN:1738-494X
1976-3824
DOI:10.1007/s12206-015-1110-1