On similarity and reducing subspaces of a class of operator on the Dirichlet space
Let $Y_{p}$ be the multiplication operator $M_{p}$ plus the Volterra operator $V_{p}$ induced by $p(z)$, where $p$ is a polynomial. Under a mild condition, we prove that $Y_{p}$ acting on the Dirichlet space $\mathfrak{D}$ is similar to multiplication operator $M_{p}$ acting on a subspace $S(\mathbb...
Gespeichert in:
Veröffentlicht in: | Taehan Suhakhoe hoebo 2024, 61(4), , pp.949-957 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let $Y_{p}$ be the multiplication operator $M_{p}$ plus the Volterra operator $V_{p}$ induced by $p(z)$, where $p$ is a polynomial. Under a mild condition, we prove that $Y_{p}$ acting on the Dirichlet space $\mathfrak{D}$ is similar to multiplication operator $M_{p}$ acting on a subspace $S(\mathbb{D})$ of $\mathfrak{D}$. Furthermore, it shows that $T_{z^n}\,(n\geq2)$ has exactly $2^{n}$ reducing subspaces on $\mathfrak{D}$. KCI Citation Count: 0 |
---|---|
ISSN: | 1015-8634 2234-3016 |
DOI: | 10.4134/BKMS.b230504 |