Finite element analysis of planar twist channel angular extrusion (PTCAE) as a novel severe plastic deformation method

A new severe plastic deformation (SPD) method based on equal channel angular pressing (ECAP) is introduced for producing ultrafine grains in bulk alloys, entitled as “Planar twist channel angular extrusion (PTCAE)”. In PTCAE method, there is additional angle, α, (plus φ and ψ angles in ECAP method)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mechanical science and technology 2014, 28(5), , pp.1753-1757
Hauptverfasser: Shokuhfar, Ali, Shamsborhan, Mahmoud
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A new severe plastic deformation (SPD) method based on equal channel angular pressing (ECAP) is introduced for producing ultrafine grains in bulk alloys, entitled as “Planar twist channel angular extrusion (PTCAE)”. In PTCAE method, there is additional angle, α, (plus φ and ψ angles in ECAP method) which represents angle associated with the lateral reversal arc of curvature in deformation zone. Three dimensional finite element method (FEM) simulations of both ECAP and PTCAE processes were performed in order to investigate the plastic deformation state of processed samples and, moreover, the effect of different die geometry (in terms of variation of planar twist angle) on plastic strain distribution and magnitude. Results revealed that PTCAE process related with ECAP process can impose higher strain values in different shear planes simultaneously in one deformation zone. Therefore, PTCAE can produce UFG or nanostructured materials better than ECAP method which has simpler design and significantly higher efficiency compared with other new SPD processes.
ISSN:1738-494X
1976-3824
DOI:10.1007/s12206-014-0321-1