Experimental study on the energy flow analysis of underwater vibration for the reinforced cylindrical structure

Energy flow analysis (EFA) can be used effectively to predict structural vibration in the medium-to-high frequency ranges. In this study, the energy flow finite element method (EFFEM), based on EFA, was used to predict the vibrations of a reinforced cylindrical structure in water. The predicted resu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mechanical science and technology 2014, 28(9), , pp.3405-3410
Hauptverfasser: Kwon, Hyun-Wung, Hong, Suk-Yoon, Oh, Dae-Kyun, Lee, Jihoon, Hwang, Doo-Jin, Kim, Ok-Sam, Song, Jee-Hun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Energy flow analysis (EFA) can be used effectively to predict structural vibration in the medium-to-high frequency ranges. In this study, the energy flow finite element method (EFFEM), based on EFA, was used to predict the vibrations of a reinforced cylindrical structure in water. The predicted results of the vibrational energy density for the structure were compared with corresponding experimental results. The structure was divided into several subsystems in the experiment, with several accelerometers attached to each subsystem. The input power excited into the experimental structure was measured using an impedance-head adhered to an exciter. Measured input power was used to predict vibration of the reinforced cylindrical structure by EFFEM in water for comparing experimental and numerical results. A comparison between the experimental and predicted results for the vibrational energy density showed that EFFEM was an effective tool for predicting structural vibration.
ISSN:1738-494X
1976-3824
DOI:10.1007/s12206-014-0404-z