Application of the differential transformation method for nonlocal vibration analysis of functionally graded nanobeams
In this study, the applicability of differential transformation method (DTM) in investigations on vibrational characteristics of functionally graded (FG) size-dependent nanobeams is examined. The material properties of FG nanobeam vary over the thickness based on the power law. The nonlocal Eringen...
Gespeichert in:
Veröffentlicht in: | Journal of mechanical science and technology 2015, 29(3), , pp.1207-1215 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, the applicability of differential transformation method (DTM) in investigations on vibrational characteristics of functionally graded (FG) size-dependent nanobeams is examined. The material properties of FG nanobeam vary over the thickness based on the power law. The nonlocal Eringen theory, which takes into account the effect of small size, enables the present model to be effective in the analysis and design of nanosensors and nanoactuators. Governing equations are derived through Hamilton’s principle. The obtained results exactly match the results of the presented Navier-based analytical solution as well as those available in literature. The DTM is also demonstrated to have high precision and computational efficiency in the vibration analysis of FG nanobeams. The detailed mathematical derivations are presented and numerical investigations performed with emphasis placed on investigating the effects of several parameters, such as small scale effects, volume fraction index, mode number, and thickness ratio on the normalized natural frequencies of the FG nanobeams. The study also shows explicitly that vibrations of FG nanobeams are significantly influenced by these effects. Numerical results are presented to serve as benchmarks for future analyses of FG nanobeams. |
---|---|
ISSN: | 1738-494X 1976-3824 |
DOI: | 10.1007/s12206-015-0234-7 |