Numerical simulations of impact flows with incompressible smoothed particle hydrodynamics

A 2D incompressible smoothed particle hydrodynamics (SPH) method is implemented to simulate the impact flows associated with complex free surface. In the incompressible SPH framework, pressure Poisson equation (PPE) based on the projection method is solved using a semi-implicit scheme to evaluate th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mechanical science and technology 2014, 28(6), , pp.2179-2188
Hauptverfasser: Aly, Abdelraheem M., Lee, Sang-Wook
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A 2D incompressible smoothed particle hydrodynamics (SPH) method is implemented to simulate the impact flows associated with complex free surface. In the incompressible SPH framework, pressure Poisson equation (PPE) based on the projection method is solved using a semi-implicit scheme to evaluate the correct pressure distribution. In this procedure, the PPE comprises the divergence-free velocity condition and density-invariance condition with a relaxation parameter. To test the accuracy and efficiency of the proposed incompressible SPH method, it was applied to several sample problems with largely distorted free surface, including 2D dam-break over horizontal and inclined planes with different inclination angles, as well as the water entry of a circular cylinder into a tank. We mainly focused on the time history of impact pressure on various positions of the solid boundary and temporal evolution of free surface profiles. The results showed reasonably good agreement with experimental data. However, further improvement is needed for extremely high impact flow.
ISSN:1738-494X
1976-3824
DOI:10.1007/s12206-014-0120-8