Ribosomal Protein L9 Maintains Stemness of Colorectal Cancer via an ID-1 Dependent Mechanism

The identification of therapeutic target genes that are functionally involved in stemness is crucial to effectively cure patients with metastatic carcinoma. We have previously reported that inhibition of ribosomal protein L9 (RPL9) expression suppresses the growth of colorectal cancer (CRC) cells by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cancer prevention 2024, 29(2), , pp.25-31
Hauptverfasser: Jeon, Eun-Hye, Park, So-Young, Park, Keon Uk, Lee, Yun-Han
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The identification of therapeutic target genes that are functionally involved in stemness is crucial to effectively cure patients with metastatic carcinoma. We have previously reported that inhibition of ribosomal protein L9 (RPL9) expression suppresses the growth of colorectal cancer (CRC) cells by inactivating the inhibitor of DNA-binding 1 (ID-1) signaling axis, which is functionally associated with cancer cell survival. In addition to cell proliferation, ID-1 is also involved in the maintenance of cancer stemness. Thus, we aimed in this study to investigate whether the function of RPL9 could correlate with CRC stem cell-like properties. Here, we demonstrated that siRNA silencing of RPL9 reduced the invasiveness and migrative capabilities of HT29 and HCT116 parental cell populations and the capacity for sphere formation in the HT29 parental cell population. CD133 cancer stem cells (CSCs) were then separated from CD133 cancer cells of the HT29 parental cell culture and treated with RPL9-specific siRNAs to verify the effects of RPL9 targeting on stemness. As a result, knockdown of RPL9 significantly suppressed the proliferative potential of CD133 colorectal CSCs, accompanied by a reduction in CD133, ID-1, and p-IκBα levels. In line with these molecular alterations, targeting RPL9 inhibited the invasion, migration, and sphere-forming capacity of CD133 HT29 CSCs. Taken together, these findings suggest that RPL9 promotes CRC stemness via ID-1 and that RPL9 could be a potential therapeutic target for both primary CRC treatment and the prevention of metastasis and/or recurrence.
ISSN:2288-3649
2288-3657
DOI:10.15430/JCP.24.004