Vision Transformers-Based Transfer Learning for Breast Mass Classification From Multiple Diagnostic Modalities
Breast mass evaluation is crucial for early breast cancer diagnosis via imaging. While Convolutional Neural Network (CNN)-based deep learning (DL) has enhanced this process, it suffers from computational complexity and limited spatial encoding. Vision Transformer (ViT)-based DL, more adept at encodi...
Gespeichert in:
Veröffentlicht in: | Journal of electrical engineering & technology 2024, 19(5), , pp.3391-3410 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Breast mass evaluation is crucial for early breast cancer diagnosis via imaging. While Convolutional Neural Network (CNN)-based deep learning (DL) has enhanced this process, it suffers from computational complexity and limited spatial encoding. Vision Transformer (ViT)-based DL, more adept at encoding spatial information, presents a promising alternative. This study introduces a ViT-based transfer learning (TL) method for breast mass classification. Three ViT-based TL architectures pretrained on ImageNet were proposed and evaluated using ultrasound and mammogram datasets. Comparative analysis against ViT trained from scratch and CNN-based TL was conducted. Results showed the ViT-based TL method achieving the highest area under curve (AUC) of 1 ± 0 for both datasets, outperforming ViT from scratch and yielding similar or better performance compared to CNN-based TL. Despite its computational cost, ViT-based TL demonstrates superior classification capabilities for breast mass images. This research provides a foundational framework for future studies exploring ViT-based TL in breast cancer diagnosis. |
---|---|
ISSN: | 1975-0102 2093-7423 |
DOI: | 10.1007/s42835-024-01904-w |