Online analysis of iron ore slurry using PGNAA technology with artificial neural network
Real-time analysis of metallic mineral grade and slurry concentration is significant for improving flotation efficiency and product quality. This study proposes an online detection method of ore slurry combining the Prompt Gamma Neutron Activation Analysis (PGNAA) technology and artificial neural ne...
Gespeichert in:
Veröffentlicht in: | Nuclear engineering and technology 2024, 56(7), , pp.2835-2841 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Real-time analysis of metallic mineral grade and slurry concentration is significant for improving flotation efficiency and product quality. This study proposes an online detection method of ore slurry combining the Prompt Gamma Neutron Activation Analysis (PGNAA) technology and artificial neural network (ANN), which can provide mineral information rapidly and accurately. Firstly, a PGNAA analyzer based on a D-T neutron generator and a BGO detector was used to obtain a gamma-ray spectrum dataset of ore slurry samples, which was used to construct and optimize the ANN model for adaptive analysis. The evaluation metrics calculated by leave-one-out cross-validation indicated that, compared with the weighted library least squares (WLLS) approach, ANN obtained more precise and stable results, with mean absolute percentage errors of 4.66% and 2.80% for Fe grade and slurry concentration, respectively, and the highest average standard deviation of only 0.0119. Meanwhile, the analytical errors of the samples most affected by matrix effects was reduced to 0.61 times and 0.56 times of the WLLS method, respectively. |
---|---|
ISSN: | 1738-5733 2234-358X |
DOI: | 10.1016/j.net.2024.02.046 |