Rings whose associated extended zero-divisor graphs are complemented

Let $R$ be a commutative ring with identity $1\neq 0$. In this paper, we continue the study started in \cite{DJF} to further investigate when the extended zero-divisor graph of $R$, denoted as $\overline{\Gamma}(R)$, is complemented. We also study when $\overline{\Gamma}(R)$ is uniquely complemented...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Taehan Suhakhoe hoebo 2024, 61(3), , pp.763-777
Hauptverfasser: Driss Bennis, Brahim El Alaoui, Raja L’hamri
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let $R$ be a commutative ring with identity $1\neq 0$. In this paper, we continue the study started in \cite{DJF} to further investigate when the extended zero-divisor graph of $R$, denoted as $\overline{\Gamma}(R)$, is complemented. We also study when $\overline{\Gamma}(R)$ is uniquely complemented. We give a complete characterization of when $\overline{\Gamma}(R)$ of a finite ring $R$ is complemented. Various examples are given using the direct product of rings and idealizations of modules. KCI Citation Count: 0
ISSN:1015-8634
2234-3016
DOI:10.4134/BKMS.b230348