Rings whose associated extended zero-divisor graphs are complemented
Let $R$ be a commutative ring with identity $1\neq 0$. In this paper, we continue the study started in \cite{DJF} to further investigate when the extended zero-divisor graph of $R$, denoted as $\overline{\Gamma}(R)$, is complemented. We also study when $\overline{\Gamma}(R)$ is uniquely complemented...
Gespeichert in:
Veröffentlicht in: | Taehan Suhakhoe hoebo 2024, 61(3), , pp.763-777 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let $R$ be a commutative ring with identity $1\neq 0$. In this paper, we continue the study started in \cite{DJF} to further investigate when the extended zero-divisor graph of $R$, denoted as $\overline{\Gamma}(R)$, is complemented. We also study when $\overline{\Gamma}(R)$ is uniquely complemented. We give a complete characterization of when $\overline{\Gamma}(R)$ of a finite ring $R$ is complemented. Various examples are given using the direct product of rings and idealizations of modules. KCI Citation Count: 0 |
---|---|
ISSN: | 1015-8634 2234-3016 |
DOI: | 10.4134/BKMS.b230348 |