Meromorphic solutions of some non-linear difference equations with three exponential terms

In this paper, we study the existence of finite order meromorphic solutions of the following non-linear difference equation \begin{equation*} f^{n}(z)+P_{d}(z,f)=p_{1}e^{\alpha_{1}z}+p_{2}e^{\alpha_{2}z}+p_{3}e^{\alpha_{3}z}, \end{equation*} where $n\geq 2$ is an integer, $P_{d}(z,f)$ is a differenc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Taehan Suhakhoe hoebo 2024, 61(3), , pp.745-762
Hauptverfasser: Min-Feng Chen, Zong Sheng Gao, Xiao-Min Huang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we study the existence of finite order meromorphic solutions of the following non-linear difference equation \begin{equation*} f^{n}(z)+P_{d}(z,f)=p_{1}e^{\alpha_{1}z}+p_{2}e^{\alpha_{2}z}+p_{3}e^{\alpha_{3}z}, \end{equation*} where $n\geq 2$ is an integer, $P_{d}(z,f)$ is a difference polynomial in $f$ of degree $d\leq n-2$ with small functions of $f$ as its coefficients, $p_{j}~(j=1,2,3)$ are small meromorphic functions of $f$ and $\alpha_{j}~(j=1,2,3)$ are three distinct non-zero constants. We give the expressions of finite order meromorphic solutions of the above equation under some restrictions on $\alpha_{j}~(j=1,2,3)$. Some examples are given to illustrate the accuracy of the conditions. KCI Citation Count: 0
ISSN:1015-8634
2234-3016
DOI:10.4134/BKMS.b230330