A Gorenstein homological characterization of Krull domains

In this note, we shed new light on Krull domains from the point view of Gorenstein homological algebra. By using the so-called $w$-operation, we show that an integral domain $R$ is Krull if and only if for any nonzero proper $w$-ideal $I$, the Gorenstein global dimension of the $w$-factor ring $(R/I...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Taehan Suhakhoe hoebo 2024, 61(3), , pp.735-744
Hauptverfasser: Shiqi Xing, Xiaolei Zhang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this note, we shed new light on Krull domains from the point view of Gorenstein homological algebra. By using the so-called $w$-operation, we show that an integral domain $R$ is Krull if and only if for any nonzero proper $w$-ideal $I$, the Gorenstein global dimension of the $w$-factor ring $(R/I)_{w}$ is zero. Further, we obtain that an integral domain $R$ is Dedekind if and only if for any nonzero proper ideal $I$, the Gorenstein global dimension of the factor ring $R/I$ is zero. KCI Citation Count: 0
ISSN:1015-8634
2234-3016
DOI:10.4134/BKMS.b230323