A Gorenstein homological characterization of Krull domains
In this note, we shed new light on Krull domains from the point view of Gorenstein homological algebra. By using the so-called $w$-operation, we show that an integral domain $R$ is Krull if and only if for any nonzero proper $w$-ideal $I$, the Gorenstein global dimension of the $w$-factor ring $(R/I...
Gespeichert in:
Veröffentlicht in: | Taehan Suhakhoe hoebo 2024, 61(3), , pp.735-744 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this note, we shed new light on Krull domains from the point view of Gorenstein homological algebra. By using the so-called $w$-operation, we show that an integral domain $R$ is Krull if and only if for any nonzero proper $w$-ideal $I$, the Gorenstein global dimension of the $w$-factor ring $(R/I)_{w}$ is zero. Further, we obtain that an integral domain $R$ is Dedekind if and only if for any nonzero proper ideal $I$, the Gorenstein global dimension of the factor ring $R/I$ is zero. KCI Citation Count: 0 |
---|---|
ISSN: | 1015-8634 2234-3016 |
DOI: | 10.4134/BKMS.b230323 |