Preliminary importance analyses on model for pH in the presence of organic impurities in the aqueous phase for a severe accident of a nuclear power plant

In this paper, a model is developed for calculating pH in the presence of organic impurities due to dissolution of paint and/or continuous injection of organic impurities in the sump. The model is implemented in the AnCheBi code for the analysis of chemical behaviors of the iodine in the containment...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nuclear engineering and technology 2024, 56(6), , pp.2079-2091
Hauptverfasser: Lee, Yoonhee, Cho, Yong Jin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, a model is developed for calculating pH in the presence of organic impurities due to dissolution of paint and/or continuous injection of organic impurities in the sump. The model is implemented in the AnCheBi code for the analysis of chemical behaviors of the iodine in the containment when the pH changes during a severe accident. Validation of the model is performed with P10T2 and P11T1 experiments carried out by AECL in Canada under the BIP project. Importance analyses of the pH calculation model in the AnCheBi code are then performed with the aforementioned experimental data via Latin hypercube sampling on the reaction coefficients, sensitivity analyses of AnCheBi, and calculation of the correlation coefficients between the reaction coefficients and figure of merits (the pH and the concentrations of the various iodine species). From the importance analyses, we provide the sensitivity of the pH calculation model to the change of pH and the concentrations of the various iodine species and the reaction coefficients related with the dominant phenomena underlying the change of pH and the concentrations of the species.
ISSN:1738-5733
2234-358X
DOI:10.1016/j.net.2024.01.016