On the number of equivalence classes of bi-partitions arising from the color change

We introduce a new class of bi-partition function $c_k(n)$, which counts the number of bi-color partitions of $n$ in which the second color only appears at the parts that are multiples of $k$. We consider two partitions to be the same if they can be obtained by switching the color of parts that are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications of the Korean Mathematical Society 2024, 39(2), , pp.345-352
1. Verfasser: 김병찬
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce a new class of bi-partition function $c_k(n)$, which counts the number of bi-color partitions of $n$ in which the second color only appears at the parts that are multiples of $k$. We consider two partitions to be the same if they can be obtained by switching the color of parts that are congruent to zero modulo $k$. We show that the generating function for $c_k(n)$ involves the partial theta function and obtain the following congruences: \begin{align*} c_2 (27n+26) &\equiv 0 \pmod{3} \\ \intertext{and} c_3 (4n + 2 ) &\equiv 0 \pmod{2}. \end{align*} KCI Citation Count: 0
ISSN:1225-1763
2234-3024
DOI:10.4134/CKMS.c230214