A Motion Decoupling Control Based on Differential Geometry for Distributed Drive Articulated Heavy Vehicle
A vehicle system motion decoupling control method was proposed to address challenges in controlling articulated heavy vehicles (AHVs). The method, based on differential geometry theory, focused on distributed electric drive AHVs. Its objective was to separate the highly nonlinear and strongly couple...
Gespeichert in:
Veröffentlicht in: | International journal of automotive technology 2024, 25(2), 138, pp.381-398 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A vehicle system motion decoupling control method was proposed to address challenges in controlling articulated heavy vehicles (AHVs). The method, based on differential geometry theory, focused on distributed electric drive AHVs. Its objective was to separate the highly nonlinear and strongly coupled dynamics system into two relatively independent subsystems: longitudinal and lateral motions. Additionally, a robust controller was designed to improve the vehicle’s resistance to external disturbances like side winds. Simulation tests using a TruckSim model of a distributed electric drive AHV show significant improvements compared to vehicles without decoupling control. The rearward amplification (RA) is reduced by 4.5%, the longitudinal velocity deviation by 67.5%, and the yaw rate deviation by 69.7%. The vehicle also demonstrates enhanced stability when subjected to strong breeze disturbances. To validate the control performance in real-time systems, the hardware-in-the-loop tests were conducted, which confirms the effectiveness of the proposed control approach in practical applications. |
---|---|
ISSN: | 1229-9138 1976-3832 |
DOI: | 10.1007/s12239-024-00032-8 |