Nutrient recycling of source-separated human faeces using biochar immobilized indigenous psychrotrophic bacteria for sustaining the agroecosystems of north-western Himalaya

The Himalayan composting toilets (CTs) offer a sustainable solution for converting human faeces (HF) into compost, supplementing the low-fertile land of the region. However, CTs face challenges such as delayed composting processes (6–8 months), increased heavy metal content, and foul odour. Therefor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied biological chemistry 2024, 67(0), , pp.1-23
Hauptverfasser: Borker, Shruti Sinai, Thakur, Aman, Pandey, Krishna Kanta, Sharma, Pallavi, Manyapu, Vivek, Khatri, Abhishek, Kumar, Rakshak
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Himalayan composting toilets (CTs) offer a sustainable solution for converting human faeces (HF) into compost, supplementing the low-fertile land of the region. However, CTs face challenges such as delayed composting processes (6–8 months), increased heavy metal content, and foul odour. Therefore, the current study evaluated biochar-amended psychrotrophic bacteria for HF degradation under low-temperature conditions (10 ± 2 °C). Out of 153 psychrotrophic bacteria isolated from HF compost, 17 bacterial strains were selected based on highest and two or more hydrolytic activities. Furthermore, considering the isolation source, bacterial strains were examined for haemolytic activity, biofilm formation, cytotoxicity and seed germination assay. In total, 14 potential strains belonging to Pseudomonas , Microbacterium , Arthrobacter , Streptomyces , Glutamicibacter , Rhodococcus , Serratia , Exiguobacterium , and Jeotgalicoccus genera were considered safe for both human handling and plants. The composting process was conducted in modified plastic drums at 10 ± 2 °C for 90 days through two treatments: Treatment 1 (T1) involving HF, non-immobilized biochar and cocopeat, and Treatment 2 (T2) involving HF, consortium-immobilized biochar and cocopeat. The consortium-immobilized biochar (T2) degraded HF within 90 days with hemicellulose and cellulose degradation ratios of 73.9% and 62.4%, respectively (p ≤ 0.05). The compost maturation indices like C/N ratio (16.5 ± 1.85), total nitrogen (2.66 ± 0.07), total phosphate (0.4 ± 0.005), total potassium (1.8 ± 0.05) also improved in T2 treatment (p ≤ 0.05). Additionally, T2 was more effective in achieving safe levels of faecal coliforms (
ISSN:2468-0842
2468-0834
2468-0842
DOI:10.1186/s13765-024-00887-6