Microfluidics-driven high-throughput phenotyping and screening in synthetic biology: from single cells to cell-free systems

The interdisciplinary nature of synthetic biology merges engineering principles with biology and provides innovative solutions for issues in the biomanufacturing industry. To develop industrially applicable biocatalysts and/or microbial cell factories, a design-build-test-learn cycle-based iterative...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biotechnology and bioprocess engineering 2024, 29(1), , pp.25-33
Hauptverfasser: Kim, Taeok, Ko, Minji, Rha, Eugene, Kim, Haseong, Lee, Hyewon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The interdisciplinary nature of synthetic biology merges engineering principles with biology and provides innovative solutions for issues in the biomanufacturing industry. To develop industrially applicable biocatalysts and/or microbial cell factories, a design-build-test-learn cycle-based iterative process is necessary, which is often time-consuming and labor-intensive. The integration of microfluidic technologies into synthetic biology can accelerate these processes, particularly for achieving high-throughput phenotyping and screening. In this review, we examine the potential of microfluidic technologies to revolutionize synthetic biology. Although commercial microfluidics demonstrate superior throughput for single-cell assays, their application can be limited, for example, in cases where products are retained inside the cells. Droplet microfluidics, on the other hand, is a rather flexible platform and shows high diversity in single-cell, cell-to-cell interaction-based, and cell-free reaction-based analyses. By examining previous studies, we have summarized the potential of microfluidic technologies to foster sustainable biomanufacturing and advanced biological engineering.
ISSN:1226-8372
1976-3816
DOI:10.1007/s12257-024-00016-6