Spoken‐to‐written text conversion for enhancement of Korean–English readability and machine translation

The Korean language has written (formal) and spoken (phonetic) forms that differ in their application, which can lead to confusion, especially when dealing with numbers and embedded Western words and phrases. This fact makes it difficult to automate Korean speech recognition models due to the need f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ETRI journal 2024, 46(1), , pp.127-136
Hauptverfasser: Choi, HyunJung, Choi, Muyeol, Kim, Seonhui, Lim, Yohan, Lee, Minkyu, Yun, Seung, Kim, Donghyun, Kim, Sang Hun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Korean language has written (formal) and spoken (phonetic) forms that differ in their application, which can lead to confusion, especially when dealing with numbers and embedded Western words and phrases. This fact makes it difficult to automate Korean speech recognition models due to the need for a complete transcription training dataset. Because such datasets are frequently constructed using broadcast audio and their accompanying transcriptions, they do not follow a discrete rule‐based matching pattern. Furthermore, these mismatches are exacerbated over time due to changing tacit policies. To mitigate this problem, we introduce a data‐driven Korean spoken‐to‐written transcription conversion technique that enhances the automatic conversion of numbers and Western phrases to improve automatic translation model performance.
ISSN:1225-6463
2233-7326
DOI:10.4218/etrij.2023-0354