Conics in quintic del Pezzo varieties

The smooth quintic del Pezzo variety $Y$ is well-known to be obtained as a linear sections of the Grassmannian variety $\mathrm{Gr}(2,5)$ under the Pl\"ucker embedding into $\mathbb{P}^{9}$. Through a local computation, we show the Hilbert scheme of conics in $Y$ for $\text{dim} Y \ge 3$ can be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Korean Mathematical Society 2024, 61(2), , pp.357-375
Hauptverfasser: 정기룡, Sanghyeon Lee
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The smooth quintic del Pezzo variety $Y$ is well-known to be obtained as a linear sections of the Grassmannian variety $\mathrm{Gr}(2,5)$ under the Pl\"ucker embedding into $\mathbb{P}^{9}$. Through a local computation, we show the Hilbert scheme of conics in $Y$ for $\text{dim} Y \ge 3$ can be obtained from a certain Grassmannian bundle by a single blowing-up/down transformation. KCI Citation Count: 0
ISSN:0304-9914
2234-3008
DOI:10.4134/JKMS.j230249