Conics in quintic del Pezzo varieties
The smooth quintic del Pezzo variety $Y$ is well-known to be obtained as a linear sections of the Grassmannian variety $\mathrm{Gr}(2,5)$ under the Pl\"ucker embedding into $\mathbb{P}^{9}$. Through a local computation, we show the Hilbert scheme of conics in $Y$ for $\text{dim} Y \ge 3$ can be...
Gespeichert in:
Veröffentlicht in: | Journal of the Korean Mathematical Society 2024, 61(2), , pp.357-375 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The smooth quintic del Pezzo variety $Y$ is well-known to be obtained as a linear sections of the Grassmannian variety $\mathrm{Gr}(2,5)$ under the Pl\"ucker embedding into $\mathbb{P}^{9}$. Through a local computation, we show the Hilbert scheme of conics in $Y$ for $\text{dim} Y \ge 3$ can be obtained from a certain Grassmannian bundle by a single blowing-up/down transformation. KCI Citation Count: 0 |
---|---|
ISSN: | 0304-9914 2234-3008 |
DOI: | 10.4134/JKMS.j230249 |