A systematic review of emotion recognition using cardio-based signals
There is a growing demand for emotion recognition systems (ERS) to be adopted in everyday life from various fields, particularly automotive, education, and social security. Recently, the use of cardio-based physiological signals, electrocardiogram (ECG), and photoplethysmogram (PPG) in ERS has yield...
Gespeichert in:
Veröffentlicht in: | ICT express 2024, 10(1), , pp.156-183 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | There is a growing demand for emotion recognition systems (ERS) to be adopted in everyday life from various fields, particularly automotive, education, and social security. Recently, the use of cardio-based physiological signals, electrocardiogram (ECG), and photoplethysmogram (PPG) in ERS has yielded promising results. Furthermore, the development of wearable devices equipped with cardio-based physiological sensors has significantly aided towards the adoption of ERS in daily life. This paper systematically reviews emotion recognition using cardio-based physiological signals, encompassing emotion models, emotion elicitation methods, and ERS development methods, emphasizing feature extraction, feature selection methods, feature dimension reduction methods, and classifiers. A summary and comparison of recent studies are presented to highlight existing studies’ gaps and suggest future research for better ERS especially using cardio-based signals. |
---|---|
ISSN: | 2405-9595 2405-9595 |
DOI: | 10.1016/j.icte.2023.09.001 |