S$-versions and $S$-generalizations of idempotents, pure ideals and Stone type theorems

Let $R$ be a commutative ring with nonzero identity and $M$ be an $R$-module. In this paper, we first introduce the concept of $S$-idempotent element of $R$. Then we give a relation between $S$-idempotents of $R$ and clopen sets of $S$-Zariski topology. After that we define $S$-pure ideal which is a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Taehan Suhakhoe hoebo 2024, 61(1), , pp.83-92
Hauptverfasser: Bayram Ali Ersoy, Unsal Tekir, Eda Yildiz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let $R$ be a commutative ring with nonzero identity and $M$ be an $R$-module. In this paper, we first introduce the concept of $S$-idempotent element of $R$. Then we give a relation between $S$-idempotents of $R$ and clopen sets of $S$-Zariski topology. After that we define $S$-pure ideal which is a generalization of the notion of pure ideal. In fact, every pure ideal is $S$-pure but the converse may not be true. Afterwards, we show that there is a relation between $S$-pure ideals of $R$ and closed sets of $S$-Zariski topology that are stable under generalization. KCI Citation Count: 0
ISSN:1015-8634
2234-3016
DOI:10.4134/BKMS.b230023