S$-versions and $S$-generalizations of idempotents, pure ideals and Stone type theorems
Let $R$ be a commutative ring with nonzero identity and $M$ be an $R$-module. In this paper, we first introduce the concept of $S$-idempotent element of $R$. Then we give a relation between $S$-idempotents of $R$ and clopen sets of $S$-Zariski topology. After that we define $S$-pure ideal which is a...
Gespeichert in:
Veröffentlicht in: | Taehan Suhakhoe hoebo 2024, 61(1), , pp.83-92 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let $R$ be a commutative ring with nonzero identity and $M$ be an $R$-module. In this paper, we first introduce the concept of $S$-idempotent element of $R$. Then we give a relation between $S$-idempotents of $R$ and clopen sets of $S$-Zariski topology. After that we define $S$-pure ideal which is a generalization of the notion of pure ideal. In fact, every pure ideal is $S$-pure but the converse may not be true. Afterwards, we show that there is a relation between $S$-pure ideals of $R$ and closed sets of $S$-Zariski topology that are stable under generalization. KCI Citation Count: 0 |
---|---|
ISSN: | 1015-8634 2234-3016 |
DOI: | 10.4134/BKMS.b230023 |