The polyol pathway and nuclear ketohexokinase A signaling drive hyperglycemia-induced metastasis of gastric cancer
Diabetes might be associated with increased cancer risk, with several studies reporting hyperglycemia as a primary oncogenic stimulant. Since glucose metabolism is linked to numerous metabolic pathways, it is difficult to specify the mechanisms underlying hyperglycemia-induced cancer progression. He...
Gespeichert in:
Veröffentlicht in: | Experimental & molecular medicine 2024, 56(0), , pp.220-234 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Diabetes might be associated with increased cancer risk, with several studies reporting hyperglycemia as a primary oncogenic stimulant. Since glucose metabolism is linked to numerous metabolic pathways, it is difficult to specify the mechanisms underlying hyperglycemia-induced cancer progression. Here, we focused on the polyol pathway, which is dramatically activated under hyperglycemia and causes diabetic complications. We investigated whether polyol pathway-derived fructose facilitates hyperglycemia-induced gastric cancer metastasis. We performed bioinformatics analysis of gastric cancer datasets and immunohistochemical analyses of gastric cancer specimens, followed by transcriptomic and proteomic analyses to evaluate phenotypic changes in gastric cancer cells. Consequently, we found a clinical association between the polyol pathway and gastric cancer progression. In gastric cancer cell lines, hyperglycemia enhanced cell migration and invasion, cytoskeletal rearrangement, and epithelial-mesenchymal transition (EMT). The hyperglycemia-induced acquisition of metastatic potential was mediated by increased fructose derived from the polyol pathway, which stimulated the nuclear ketohexokinase-A (KHK-A) signaling pathway, thereby inducing EMT by repressing the
CDH1
gene. In two different xenograft models of cancer metastasis, gastric cancers overexpressing AKR1B1 were found to be highly metastatic in diabetic mice, but these effects of AKR1B1 were attenuated by KHK-A knockdown. In conclusion, hyperglycemia induces fructose formation through the polyol pathway, which in turn stimulates the KHK-A signaling pathway, driving gastric cancer metastasis by inducing EMT. Thus, the polyol and KHK-A signaling pathways could be potential therapeutic targets to decrease the metastatic risk in gastric cancer patients with diabetes.
Gastric cancer’s deadly dance with diabetes: the role of fructose in metastasis
Diabetes and cancer, two major worldwide health concerns, often coexist in patients. Recent research suggests diabetes can heighten the risk of various cancers. However, the precise reasons behind this link remain unknown. In this study, researchers discovered that high glucose levels (sugar in the blood), a diabetes hallmark, can enhance cancer cell aggression. This occurs via the polyol pathway (a process where glucose transforms into a substance named fructose). The fructose then triggers a specific signaling pathway (a series of chemical reactions) in the cancer c |
---|---|
ISSN: | 2092-6413 1226-3613 2092-6413 |
DOI: | 10.1038/s12276-023-01153-3 |